A Study on Optimal Parameter Tuning for Rocchio Text Classifier

نویسنده

  • Alessandro Moschitti
چکیده

Current trend in operational text categorization is the designing of fast classification tools. Several studies on improving accuracy of fast but less accurate classifiers have been recently carried out. In particular, enhanced versions of the Rocchio text classifier, characterized by high performance, have been proposed. However, even in these extended formulations the problem of tuning its parameters is still neglected. In this paper, a study on parameters of the Rocchio text classifier has been carried out to achieve its maximal accuracy. The result is a model for the automatic selection of parameters. Its main feature is to bind the searching space so that optimal parameters can be selected quickly. The space has been bound by giving a feature selection interpretation of the Rocchio parameters. The benefit of the approach has been assessed via extensive cross evaluation over three corpora in two languages. Comparative analysis shows that the performances achieved are relatively close to the best TC models (e.g. Support Vector Machines).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Importance of Parameter Tuning in Text Categorization

Text Categorization algorithms have a large number of parameters that determine their behaviour, whose effect is not easily predicted objectively or intuitively and may very well depend on the corpus or on the document representation. Their values are usually taken over from previously published results, which may lead to less than optimal accuracy in experimenting on particular corpora. In thi...

متن کامل

The Importance of Parameter Tuning in Text Categorization

Text Categorization algorithms have a large number of parameters that determine their behaviour, whose effect is not easily predicted objectively or intuitively and may very well depend on the corpus or on the document representation. Their values are usually taken over from previously published results. In this article we investigate the effect of parameter tuning on the accuracy of two Text C...

متن کامل

ارتقای کیفیت دسته‌بندی متون با استفاده از کمیته‌ دسته‌بند دو سطحی

Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...

متن کامل

Towards a Semantic Classifier Committee based on Rocchio

This paper concerns supervised classification of text. Rocchio, the method we choose for its efficiency and extensibility, is tested on three reference corpora "20NewsGroups", "OHSUMED" and "Reuters", using several similarity measures. Analyzing statistical results, many limitations are identified and discussed. In order to overcome these limitations, this paper presents two main solutions: fir...

متن کامل

An kNN Model-Based Approach and Its Application in Text Categorization

An investigation has been conducted on two well known similarity-based learning approaches to text categorization. This includes the k-nearest neighbor (kNN) classifier and the Rocchio classifier. After identifying the weakness and strength of each technique, we propose a new classifier called the kNN model-based classifier by unifying the strengths of k-NN and Rocchio classifier and adapting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003